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Our work has focused on the f-plane shollow-water system:
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The fields (@, v)(z, y, t) are the depth-averaged x-y components of the velocity field; the surface z = a(z, y)
represents the bottom topography; the free surface of the fluid is given by z = a(x,y) + h(z,y,t) and the
fluid occupies the region where h(x,y,t) > 0. We determine the free-boundary where h(z,y,t) = 0 as part
of the solution.

The turbulent viscous-stresses are given by
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and this stress-tensor is purposely taken to be deviatoric and thus trace free. The terms (fho, — fht) in (2)
and (3) represent the Coriolis forces, the terms
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represent the bottom friction forces, the terms

(S =0 3 (00 D))

)\2

represent the wind forces generated by wind velocities (uy,, vy, ). Finally A2 < 1 represents the ratio (%)2
where H is a typical vertical length scale and L is a typical lateral length scale and C? is the inverse Froude
number.

Novel features of our work involve a “Lagrangian” reformulation of (1)-(3) and a robust Lagrangian code
to integrate the system (1)-(3). We have developed all codes in MATLAB and have a parallel impelementation
of the code for the two-dimensional problem. These codes successfully reproduce the exact solutions obtained
when the bottom surface is a paraboloid.



